Selamat datang, terima kasih atas kunjungannya. Salam perdamaian

Kegiatan Kepramukaan

Sebelum pelatihan kepramukaan dimulai terlebih dahulu diadakan apel pembukaan.Dan setelah pelatihan juga diadakan apel penutupan. Kegiatan ini dilaksanakan setiap hari Jumat sore.

This is default featured slide 2 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.

This is default featured slide 3 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.

Kegiatan Kepramukaan

Sebelum pelatihan kepramukaan dimulai terlebih dahulu diadakan apel pembukaan.Dan setelah pelatihan juga diadakan apel penutupan. Kegiatan ini dilaksanakan setiap hari Jumat sore.

Kegiatan Kepramukaan

Sebelum pelatihan kepramukaan dimulai terlebih dahulu diadakan apel pembukaan.Dan setelah pelatihan juga diadakan apel penutupan. Kegiatan ini dilaksanakan setiap hari Jumat sore.

POLA BILANGAN



Materi Pola bilangan yang merupakan sub bab dari materi barisan aritmatika untuk SMP disini kta akan membahas mengenai pola bilangan ganjil dan pola bilangan genap,

Apa itu pola bilangan ?
Pola ialah sebuah susunan yang mempunyai bentuk teratur, sedang bilangan itu sendiri ialah sesuatu yang digunakan untuk menunjukkan kuantitas ( banyak/sedikit ) dan ukuran ( ringan / berat / pendek / panjang / luas ). Bilangan ditunjukkan oleh suatu tanda atau lambang yang disebut angka teratur dari bentuk satu ke bentuk lainnya.

Dalam beberapa kasus kita temui seuah bilangan yang tersusun dari bilangan lain yang mempunyai pola tertentu, maka yg demikian disebut sebagai pola bilangan.


POLA BILANGAN GENAP DAN BILANGAN GANJIL

Pola Bilangan Genap
Salah satu himpunan dari bilangan asli adalah bilangan ganjil. apa itu bilangan ganjil ? Bilangan ganjil adalah bilangan asli yang tak habis jika dibagi dengan 2 atau kelipatannya.

Contoh soal :
Tentukanlah jumlah 7 bilangan asli ganjil yang pertama !

jawab :
ketujuh bilangan tersebut adalah : 1, 3, 5, 7, 9, 11, 13. jadi n=7
jumlah ke-7 bilangan tersebut adalah 72=49
untuk membuktikan silahkan dihitung manual 1+3+5+7+9+11+13=...?

Contoh 2 pola bilangan
Berapakah banya bilangan asli ganjil yang jumlahnya 81 ?
jawab :
Kita telah mengetahui bahwa jumlah bilangan asli ganjil yaitu banyaknya bilangan asli ganjil dikuadratkan secara sederhana dapat kita tuliskan n2 dari pertanyaan diatas dapat kita simpulkan bahwa
n2=81, maka
n = √81
n = 9, jadi banyaknya bilangan ganjil adalah 9.


Pola Bilangan Genap
Selain bilangan ganjil, bilangan genap juga termasuk anggota dari bilangan asli yaitu {2, 4, 6, 8, ...}
Perhatikan susunan heksagonal seperti pada gambar berikut :








Gambar diatas menunjukkan bahwa heksagonal yang terdiri sebanyak bilangan genap dapat disusun membentuk pola tertentu. sehingga gambar diatas bisa disebut sebagai pola bilangan genap.
Untuk lebih memahami perhatikan uraian penjumlahan bilangan asli genap berikut :
Penjumlahan dari 2 bilangan genap :
2 + 4 = 6, n=2 dapat ditulis 6 = 2 (2+1)
penjumlahan 3 bilangan genap :
2 + 4 + 6 = 12, n=3 dapat ditulis 12 = 3 ( 3+1)
penjulahan 4 bilangan genap :
2 + 4 + 6 + 8 = 20, n=4 dapat ditulis 20 = 4 (4+1)
dari pola di atas seharusnya anda sudah dapat menarik kesimpulan rumus jumlah pola bilangan genap, ya benar rumusnya adalah n(s) = n ( n + 1 )

Skala

A. Skala
     Skala adalah angka yang menunjukkan perbandingan jarak di peta dengan jarak sebenarnya.

B. Jenis Skala
     1. Skala angka
         contoh 1:500.000 dibaca setiap 1 cm pada peta mewakili 500.000 cm di lapangan
     2. Skala garis
         contoh =  0_2_4_6_8_10 km
                         0_1_2_3_4_5 cm

         dibaca setiap 1 cm pada peta mewakili 2km di lapangan
         Penyebut kilometer yang terakhir (10km) dibagi penyebut centimeter yang terakhir (5cm)
         Jadi, 10 : 5 = 2 km

     3. Skala verbal
         contoh 1 inchi = 5 mil
         skala verbal biasanya digunakan oleh orang-orang Amerika dan Eropa

C. Jenis Peta Berdasarkan Skala
  1. Peta kadaster (1:100 - 1:5.000) = skala sangat besar. Contoh: Peta Badan Pertanahan Nasional, Peta Sertifikat Tanah, Peta Perencanaan Pembangunan/Proyek, Peta Wilayah RT dan RW. 
  2. Peta skala besar (1:5.001 - 1:250.000). Contoh: Peta Desa, Peta Kelurahan, Peta Kecamatan dan Peta Kotamadya. 
  3. Peta skala menegah (1:250.001 - 1:500.000). Contoh: Peta Kabupaten dan Peta Propinsi. 
  4. Peta skala kecil (1:500.001 - 1:1.000.000). Contoh: Peta Pulau Kalimantan dan Peta Negara 
  5. Peta geografis ( > 1:1.000.001) = skala sangat kecil. Contoh: Peta Regional Asia Timur, dan Peta Dunia. 

D. Contoh Soal
1. Membaca skala peta
contoh:
Sebuah peta kelurahan berskala 1:5.000 diperkecil menjadi skala 1:25.000, maka pernyataan yang benar adalah?
a. informasi yang disajikan semakin detail
b. simbol-simbol kartografi akan semakin banyak
c. perbedaan kontur akan semakin bertambah besar
d. informasi peta akan berubah tetapi jaraknya tidak berubah
e. informasi peta tidak berubah tetapi jaraknya akan berubah

jawab: e.

pada peta kelurahan skala semula adalah 1:5.000, kemudian diubah menjadi skala 1:25.000 maka jarak di dalam peta berubah menjadi kecil dari semula.

2. Menghitung jarak sebenarnya
contoh:
Jarak antara kota A ke kota B pada peta adalah 1,15 cm dengan skala peta 1:15.000. Berapa jarak sebenarnya kota A ke kota B?
a. 172.500 km
b. 17.250 km
c. 1.725 km
d. 0,1725 km
e. 0,01725 km

jawab:

Jarak Sebenarnya= jarak pada peta x skala
                            = 1,15 x 15.000
                            = 17.250 cm (sentimeter ke kilometer = dibagi 100.000)
                            = 0,1725 km ( d. )
jadi, jarak sebenarnya kota A ke kota B adalah 0,1725 kilometer

3. Menghitung jarak pada peta
contoh:
Jarak antara kota A ke kota B sebenrnya di lapangan adalah 1 km. Berapa jarak kota A ke kota B pada peta dengan skala peta 1:50.000?
a. 0,2 cm
b. 2 cm
c. 20 cm
d. 5 cm
e. 50 cm

jawab:
Jarak pada Peta= jarak sebenarnya / skala
                         = 1 km / 50.000 cm (kilomter dijadikan sentimeter = dikali 100.000)
                         = 100.000 cm / 50.000 cm
                         = 2 cm ( b. )
jadi, jarak kota A ke kota B pada peta adalah 2 sentimeter

4. Memperkecil skala

contoh:
Apabila sebuah peta berskala 1:2.000.000 diperkecil 2 kali, maka skalanya berubah menjadi?
a. 1:1.000.000
b. 1:2.000.000
c. 1:3.000.000
d. 1:4.000.000
e. 1:5.000.000

Jawab:
= skala x jumlah perkecilnya
= 2.000.000 x 2
= 4.000.000
jadi, skala peta akan berubah menjadi 1:4.000.000. peta akan semakin kecil dan tidak detail.

5. Memperbesar skala
contoh:
Apabila sebuah peta berskala 1:2.000.000 diperbesarl 4 kali, maka skalanya berubah menjadi?
a. 1:50.000
b. 1:500.000
c. 1:5.000.000
d. 1:800.000
e. 1:8.000.000

Jawab:
= skala / jumlah perkecilnya
= 2.000.000 / 4
= 500.000

jadi, skala peta akan berubah menjadi 1:500.000. peta akan semakin besar dan semakin detail.

6. Kenampakan objek dengan skala

contoh:
kenampakan gudang dengan ukuran 50 m x 50 m dengan skala 1:200 adalah?
a. 1 cm x 1 cm
b. 1,5 cm x 1,5 cm
c. 2 cm x 2 cm
d. 2,5 cm x 2,5 cm
e. 20 cm x 20 cm

jawab: ukuran bangunan di peta
= objek di lapangan / skala
= 50 m x 50 m / 200 cm (meter dijadikan sentimeter = dikali 100)
= 5000 cm x 5000 cm / 200 cm
= 2,5 cm x 2,5 cm ( d. )
jadi, ukuran gedung pada peta adalah 2,5 cm x 2,5 cm

7. Mencari skala peta pada peta kedua
contoh:
Peta peta A, jarak kota X ke kota Y adalah 5 cm dengan skala 1:1.500.000.
Pada peta B, jarak kota X ke kota Y adalah 2 cm.
Berapa skala peta B?
a. 1:375
b. 1:3.750
c. 1:37.500
d. 1:375.000
e. 1:3.750.000

jawab: skala peta kedua
= jarak yang berskala x skala yang diketahui
jarak yang tidak berskala
= 5 / 2 x 1.500.000
= 3.750.000 ( e. )
jadi, skala pada peta B adalah 1:3.750.000


8. Merubah skala garis menjadi skala angka
0 - 2 - 4 - 5 cm
0 -- 5 -- 10 km
Ubahlah skala garis di atas menjadi skala angka!
a. 1 : 100.000
b. 1 : 200.000
c. 1 : 250.000
d. 1 : 500.000
e. 1 : 550.000


jawab:
jumlah garis 5 cm
angaka skala 10 km = 1.000.000 cm
Skala  =  1.000.000/5 = 200.000/1
maka skala angkanya adalah 1 : 200.000

9. Mencari skala dan jarak sebenarnya melalui garis astronomis
contoh:
Kota x dan kota y dalam peta berselisih 3 derajat. Jarak kota x ke kota y pada peta adalah 9 cm. jika dihitung dengan menggunakan selisih derajat lintang, skala peta tersebut adalah?
a. 1 : 3.700.000
b. 1 : 3.330.000
c. 1 : 2.770.000
d. 1 : 2.700.000
e. 1 : 2.330.000

Jawab:
1 derajat = 111 km
3 derajat = 333 km = 33.300.000 cm
9 cm = 33.300.000 cm
skala = (33.300.000/9)
1 cm = 3.700.000 cm
skala peta 1 : 3.700.000 (a)

10. Skala Foto Udara
contoh:
Suatu wilayah daratan akan dibuatan foto udara dengan pesawat terbang. Tinggi pesawat terbang adalah 5.000 mdpl. Daerah yang difoto berada pada ketinggian 400 mdpl. Berapa skala foto udara yang akan dihasilkan apabila menggunaka fokus kamera 250 mm?
a. 1:1.150
b. 1:1.250
c. 1:1.500
d. 1:1.840
e. 1:1.950

jawab= skala foto udara
=  .          fokus kamera (f)                 
   tinggi pesawat (H) - tinggi objek (h)
=  .                 250                              
                 5.000 - 400
= 250 / 4.600
= 4.600 / 250 (skala = pembagian dibalik)
= 1 : 1.840 ( d. )
jadi, skala foto udara yang dihasilkan adalah 1:1.840

Ciri-ciri Bilangan yang Habis Dibagi

Waktu kita membagi kadang bingung, dengan angka yang banyak misalnya, bisa dibagi apa tidak ya. Sebenarnya ada cara yang mudah untuk mengetahuinya dan ga perlu menghitung dan mikir terlalu lama. Mau tahu, Nah, Caranya sebagai berikut:

BILANGAN HABIS DIBAGI 2
Suatu bilangan habis dibagi 2, ciri-cirinya adalah bilangan yang berakhiran (berangka satuan) 0, 2, 4, 6, 8. Dengan kata lain bilangan itu adalah bilangan genap.

Contoh: apakah 74 habis dibagi 2? Karena 74 merupakan bilangan genap (Ingat rumus untuk bilangan genap. Rumus untuk bilangan genap adalah 2k untuk sebarang k bilangan bulat. Sedangkan untuk bilangan ganjil yaitu 2k-1 untuk sebarang k bilangan bulat). Karena 74 memenuhi rumus bilangan genap, maka 74 habis dibagi 2. 74 : 2 = 37


BILANGAN HABIS DIBAGI 3
Jumlah digit-digitnya habis dibagi 3
Contoh: Apakah 213 habis dibagi 3? Akan kita jumlahkan digit-digit pada bilangan 213. Didapatkan, 2 + 1 + 3 = 6. Karena 6 (hasil dari penjumlahan digit-digitnya) habis dibagi 3. Maka bilangan itu (213) habis dibagi 3. Apakah -345 habis dibagi 3? Langkahnya sama. Kita jumlahkan digit-digitnya dan menghiraukan tanda negative. Jangan tertipu oleh tanda negatif.


BILANGAN HABIS DIBAGI 4
Dua digit terakhir habis dibagi 4. Lebih mudahnya yaitu puluhan dari bilangan itu habis dibagi 4.
Contoh: Apakah 324 habis dibagi 4? Dua digit terakhir yaitu 24. Dan 24 habis dibagi 4. Sehingga 326 habis dibagi 4. Apakah 2006 habis dibagi 4? Tidak. Karena dua angka terahirnya yaitu 06. Sedangkan 06 tidak habis dibagi 4. Sehingga 2006 tidak habis dibagi 4.


BILANGAN HABIS DIBAGI 5
Bilangan tersebut berakhiran 0 atau 5.
Contoh: Apakah 3255 habis dibagi 5? Digit terakhir adalah 5. Sehingga 3255 habis dibagi 5. Apakah 2005 habis dibagi 5? Sangatlah mudah menentukan ciri bilangan habis dibagi 5


BILANGAN HABIS DI BAGI 6
Ciri Bilangan yang habis dibagi 6 adalah bilangan genap yang jumlah angka-angkanya habis dibagi 3. Atau bilangan yang habis dibagi 3 dan habis dibagi 2.
Contoh: apakah 234 habis dibagi 6? Sekarang kita perhatikan jumlah angka-angkanya. 2 + 3 + 4 = 9. Dan 9 habis dibagi 3. Karena jumlah angka-angkanya habis dibagi 3 dan bilangan itu genap.
Maka 234 habis dibagi 6.


BILANGAN HABIS DI BAGI 7
Bila bagian satuannya dikalikan 2, dan menjadi pengurang dari bilangan tersisa. Jika hasilnya habis dibagi 7,
maka bilangan itu habis dibagi 7.

Contoh: apakah 5236 habis dibagi 7? Kita pisahkan 6 (satuannya), kemudian 523 – (6 x 2) = 511. Apakah 511 habis dibagi 7? 51 – (1 x 2) = 49. Karena 49 habis dibagi 7
maka 5236 habis dibagi 7.


BILANGAN HABIS DI BAGI 8
Tiga digit terakhir habis dibagi 8.
Contoh: apakah 3125 habis dibagi 8? Tiga digit terakhir yaitu 125. Dan 125 habis dibagi 8. Sehingga 3125 habis dibagi 8. Bagaimana dengan 56? Tidak jadi masalah karena 56 = 056.
Sehingga tiga digit terakhirnya yaitu 056. dan 56 habis dibagi 8.
Sehingga 56 habis dibagi 8.


BILANGAN HABIS DI BAGI 9
Jumlah angka-angkanya habis dibagi 9.
Contoh: apakah 819 habis dibagi 9? Jumlah digit-digitnya yaitu 8 + 1 + 9 = 18. Dan 18 habis dibagi 9.
Sehingga 819 habis dibagi 9.


BILANGAN HABIS DI BAGI 10
Angka satuannya adalah 0.
Contoh: apakah 8190 habis dibagi 10? Angka satuan=0, maka 8190 habis dibagi 10.

BILANGAN HABIS DI BAGI 15
Angka satuannya adalah 0 atau 5. Jumlah angkanya habis dibagi 3.
Contoh: apakah 8190 habis dibagi 15? Angka satuan=0, Jumlah angkanya = 8+1+9+0=18 (habis dibagi 3), maka 8190 habis dibagi 15.


BILANGAN YANG HABIS DI BAGI 11
Bilangan yang habis dibagi 11 yaitu jika bilangan tersebut merupakan kelipatan 11. Ciri bilangan habis dibagi 11 yaitu jika jumlah digitnya dengan berganti tanda dari digit satuan hasilnya habis dibagi 11.

contohnya:
#Apakah 1234 habis dibagi 11?
Maka yang kita lakukan adalah menjumlahkan dengan tanda berselang seling dari digit satuan. Tanda dimulai dari positif. Maka mengechecknya 4 – 3 + 2 – 1 = 2. Karena 2 tidak habis dibagi 11, maka 1234 juga tidak habis dibagi 11.

#Apakah 803 habis dibagi 11?
3 – 0 + 8 = 11. Maka 803 habis dibagi 11.


BILANGAN YANG HABIS DIBAGI 13
Ciri bilangan habis dibagi 13 adalah bilangan asal dipisahkan satuannya. Kemudian dikalikan 9 (multiplier dari 13). Dan bilangan yang setelah dipisahkan tadi dikurangi dengan 9 kali bilangan satuannya.
Misalnya bilangan awal kita adalah abcdefg, maka ciri bilangan habis dibagi 13 adalah (abcdef) – 9g. Jika hasilnya habis dibagi 13, maka bilangan semula juga habis dibagi 13.

Contoh: Apakah 3419 habis dibagi 13 ? Kita pisahkan 341 – 9(9) = 341 – 81 = 260.
Karena 260 habis dibagi 13, maka 3419 habis dibagi 13.

Kita coba angka yangg lebih besar. Misal Apakah 12818 habis dibagi 13?
1281 – 9(8) = 1281 – 72 = 1209
120 – 9(9) = 120 – 81 = 39.
39 habis dibagi 13, maka 12818 habis dibagi 13.


BILANGAN YANG HABIS DIBAGI 17
Ciri bilangan habis dibagi 17 adalah jika bilangan tersebut dipisahkan antara satuannya dan sisa angkanya kemudian jika sisa angkanya dikurangi dengan 5 kali satuannya dan hasilnya habis dibagi 17. Maka bilangan semula habis dibagi 17.

contohnya: apakah 153 habis dibagi 17?
Langkah pertama yaitu memisahkan bilangan tersebut dengan satuannya. 153 menjadi 15 dan 3. Kemudian kita lakukan langkah pada syarat tersebut.
15 – 3(5) = 0.
Karena 0 habis dibagi 17, maka 153 juga habis dibagi 17.

Contoh lain yang lebih panjang yaitu apakah 5338 habis dibagi 17?
Kita lakukan langkah-langkah yang telah diberikan sebelumnya.
533 – 8(5) = 493
49 – 3(5) = 34
Karena 34 habis dibagi 17, maka 5338 habis dibagi 17.


CIRI BILANGAN HABIS DIBAGI 19
Ciri bilangan habis dibagi 19 yaitu jika satuannya dikalikan dua dan ditambahkan pada angka sisa (angka semula yang dibuang satuannya) dan hasilnya habis dibagi 19 maka bilangan itu habis dibagi 19.

Contoh: Apakah 209 habis dibagi 19?
Secara perhitungan biasa, 209 habis dibagi 19. Karena 19 x 11 adalah 209. Sekarang bagaimana jika kita menggunakan ciri bilangan habis dibagi 19 menggunakan cara yang telah disebutkan di atas. Sekarang kita perhatikan angka 209. Angka tersebut satuannya kita pisah.
Diperoleh angka-angka baru yaitu 20 dan 9.
Kemudian langkah selanjutnya yaitu angka satuan kita kalikan dua dan kita jumlahkan dengan angka yang lain yang telah dipisah tadi. Diperoleh, 20 + 9(2) = 28. Dan karena 38 habis dibagi 19, maka bilangan asal tadi juga habis dibagi 19. Sehingga, 209 habis dibagi 19.

Sekarang kita lanjutkan untuk contoh dengan angka yang lebih besar.
Apakah 9937 habis dibagi 19?
Kita lakukan langkah-langkah yang telah diberikan tadi. 933 + 7(2) = 1007. Tentunya sekarang kita dapatkan angka yang lebih kecil. Untuk mengecheck apakah 1007 habis dibagi 19, maka kita lakukan langkah yang sama. Dengan cara yang sama. 100 + 7(2) = 144. Kita lanjutkan dengan mengecheck apakah 114 habis dibagi 19. Kita peroleh, 11 + 4(2) = 19.
Dan karena 19 habis dibagi 19, maka 114 habis dibagi 19. Dan diperoleh 1007 habis dibagi 19. Dan akhirnya 9937 juga habis dibagi 19.

Pas Foto Guru Karyawan